

Welcome to flamy’s documentation!

Flamy is an all-in-one command line tool that helps you :

	Manage your Hive (and Spark-SQL) database on Hadoop or AWS

	Keep your SQL tables and queries clean and well-defined

	Easily design, control and execute complex data workflows

	Automatically infer and visualize dependencies between SQL queries

	Getting Started
	Flamy Overview

	Setup Guide

	Tutorial

	User Guide
	Naming Conventions

	Configuring Flamy

	List of Flamy commands

	FAQ + Did You Know?

	Regen

Getting Started

	Flamy Overview
	What Flamy is

	What Flamy is not

	Setup Guide
	Installing Flamy

	Setting up direct Metastore access

	Tutorial
	Part 0. Starting the demo

	Part 1. Local commands

	Part 2. Remote commands

	What next ?

Flamy Overview

What Flamy is

Flamy is a command line tool designed to make all people using SQL on Hadoop being more productive.

It does so by bringing multiple functionalities, that allows SQL developers to:
- easily and rapidly check the integrity of their queries, even against an evolving database
- better visualize and understand the workflows they created
- easily deploy and execute them on multiple environments
- efficiently gather metadata from the Metastore

SQL is often recognized to be a powerful language to script and automate queries,
while at the same time maintaining and improving running workflow can often become quite frustrating.
The fact that it is not a compiled language and cannot be easily unit tested is often cited
as a main downside when compared to other approaches such as using plain Spark in java or scala.

Flamy’s philosophy is to remove such downsides, and allow users to make the most out of SQL on Hadoop,
without forcing them to use SQL for tasks it is not great at.

What Flamy is not

Flamy is not a GUI

Flamy doesn’t come with fancy graphical sugar, yet. Sorry.

Flamy is not a scheduler

It can execute workflows of consecutive Hive-SQL queries,
and we plan to add more capabilities such as running Presto queries or Spark jobs,
but it has no cron-like capabilities and is not intended to have someday.

Flamy is best used in conjunction with your favorite scheduler,
either by using flamy to generate a workflow and export it into the scheduler’s format,
or by having the scheduler directly calling flamy commands.
We encourage the community to contribute by building such bridges
between flamy and other great open source schedulers.

Setup Guide

	Installing Flamy

	Setting up direct Metastore access

Installing Flamy

To install flamy, you can either download a pre-packaged version or build it from source.

Dependencies

Flamy requires the program dot [http://www.graphviz.org/] to be able to print table dependency graphs.

Debian-based

apt-get install graphviz libgraphviz-dev

Mac OS X

Install brew if not already installed

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" < /dev/null 2> /dev/null

Install graphviz

brew install graphviz

Installation

Download a pre-packaged version

Download and untar the .tgz from this url [https://oss.sonatype.org/service/local/artifact/maven/content?r=snapshots&g=com.flaminem&a=flamy&p=tgz&v=LATEST]:

wget 'https://oss.sonatype.org/service/local/artifact/maven/content?r=snapshots&g=com.flaminem&a=flamy&p=tgz&v=LATEST' | gunzip | tar -x

You still need to install the program `dot` as explained above to be able to display graphs.

or Build from source

Compilation requires sbt [http://www.scala-sbt.org/] to compile.

git clone git@github.com:flaminem/flamy.git
cd flamy
sbt clean stage

The packaging directory will be found at target/universal/stage, with the executable at target/universal/stage/bin/flamy
and the configuration file at target/universal/stage/conf/flamy.properties
but bear in mind that recompiling the project will regenerate the target/universal/stage/ folder.
You can use the –config-file to point the configuration file to an alternate location.

Starting a shell

Once packaged, you can start a shell with:

target/universal/stage/bin/flamy shell

Once in the shell, the help command will list all the available commands and their options, and the show conf command
will help you troubleshoot any configuration issue.

(Optional) Running unit tests

sbt test

(Optional) Granting access for Flamy to the Hive Metastore

Flamy can perform some actions such as metadata retrieval from Hive’s Metastore.
It can perform many useful actions such as listing all the schemas, tables, or partitions with useful associated information.

For this Flamy can use either the Thrift client (HiveMetastoreClient) provided by Hive or directly connect to the metastore database via JDBC.
While the first method works out of the box, it is often much slower than the second.
On the other hand, the JDBC connection requires some configuration on the Hive Metastore’s side, as explained here.

(Optional) local install

Ubuntu

In your .basrhc, add this and set FLAMY_HOME to the correct value:

FLAMY_HOME=<PATH_TO_FLAMY_INSTALL_DIR>
alias flamy=$FLAMY_HOME/bin/flamy

Next steps

	Try the demo

	Configure flamy by editing target/universal/stage/conf/flamy.properties (See the configuration guide)

	Check out the list of all commands available in Flamy.

Setting up direct Metastore access

Flamy can perform some actions such as metadata retrieval from Hive’s Metastore.
It can perform many useful actions such as listing all the schemas, tables, or partitions with useful associated information.
For this, Flamy can use either the Thrift client (HiveMetastoreClient) provided by Hive or directly connect to the metastore database via JDBC.
While the first method works out of the box, it is often much slower than the second.

In order to grant direct access to the Hive Metastore for Flamy, you need to ask your favorite administrator
to create a flamy user and grant it a read-only access to the following tables of the metastore (beware, for names are case-sensitive) :

	PARTITIONS

	TBLS

	DBS

	SDS

	COLUMNS_V2

	TABLE_PARAMS

	PARTITION_PARAMS

Currently, flamy is only compatible with Metastore’s backed by PostgreSQL, MySQL or MariaDB.
MySQL and MariaDB require the user to manually download the jdbc client jar, for license incompatibility reasons.

If you are not yourself an administrator, and want to perform the changes yourself on a development cluster,
you may do so by following theses steps:

1. connect with ssh to the machine hosting the database’s metastore

(replace <MY_HOSTS> with the correct name)

ssh <METASTORE_HOST>

2. connect to the database

If you have a Cloudera cluster with a postgresql database,
you may retrieve the admin password with:

sudo cat /var/lib/cloudera-scm-server-db/data/generated_password.txt

and then connect with:

psql -h localhost -p 7432 hive cloudera-scm

Otherwise please refer to your SQL back end’s documentation.

3. Once connected to the database, create a new user called flamy

(replace <FlamyPassword> with the strong password of your choice):

CREATE USER flamy WITH PASSWORD '<FlamyPassword>';

4. And grant read-only access to flamy to the following tables

GRANT SELECT ON TABLE "PARTITIONS", "TBLS", "DBS", "SDS", "COLUMNS_V2", "TABLE_PARAMS", "PARTITION_PARAMS" TO flamy ;

5. Change Flamy’s configuration to enable direct access to the Metastore

Edit conf/flamy.properties and add or change the line

flamy.env.<ENVIRONMENT>.hive.meta.fetcher.type = direct

for the specific environment you want to connect to (eg: dev, prod, etc.)

You also need to fill the following properties:

flamy.env.<ENVIRONMENT>.hive.metastore.jdbc.uri = ...
flamy.env.<ENVIRONMENT>.hive.metastore.jdbc.user = flamy
flamy.env.<ENVIRONMENT>.hive.metastore.jdbc.password = ...

For instance, if the metastore is using postgresql, the jdbc uri shall be of this form

	::

	jdbc:postgresql://<METASTORE_HOST>:<PORT>/hive

If using Cloudera, <PORT> might be 7432, but we recommend checking on your parameters.

6. Try connecting to the database

by running the following command:

bin/flamy show schemas --on <ENVIRONMENT>

7. (Optional) If the metastore is using *postgresql*, you might get this kind of error

FATAL: no pg_hba.conf entry for host "XXX.XXX.XXX.XXX", user "flamy", database "hive", SSL off
"hive", SSL off

In such case, you will have to:

7.1. connect to the Metastore Host with a sudo user

ssh <METASTORE_HOST>

7.2. edit postgresql’s pg_hba.conf configuration file

If using cloudera and the hive metastore uses the same database as Cloudera Manager:

sudo vi /var/lib/cloudera-scm-server-db/data/pg_hba.conf

otherwise:

sudo vi /etc/postgresql/<PG_VERSION>/main/pg_hba.conf

7.3. Add the following line

Grant access for user flamy to hive database
host hive flamy <IP/MASK> md5

where <IP/MASK> describe the subnetwork that will require to connect to the database with flamy.
Check https://www.iplocation.net/subnet-mask for more informations.

7.4. Finally, restart the database (schedule a maintenance for this)

Be careful if the database is using postgresql, and especially if the same database is used by cloudera,
since the stop (and the restart) command will block every new connection to the database and wait for all currently open connections to be closed before stopping.
This means that you will have to stop the HiveMetastore, HiveServer2, and all Cloudera monitoring
services first (the ActivityMonitor, cloudera-scm-server and all cloudera-scm-agents).

If you don’t fear being careless, the fast_stop command should shut down the database immediately and drop the currently open connections.

Tutorial

In this tutorial, we will use a sample of server logs from the NASA (1995) [http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html],
and show how we can use Hive, Spark and Flamy to build a small ETL pipeline.

Part 0. Starting the demo

First, download and install flamy as explained here, and make sure FLAMY_HOME is correctly set.

export FLAMY_HOME=<path/to/flamy/installation/dir>

Once ready, checkout the flamy_demo git repository [https://github.com/flaminem/flamy-demo]:

git clone git@github.com:flaminem/flamy_demo.git
cd flamy_demo

start the demo:

./demo.sh

and type your first flamy command:

show tables

You should obtain the following result:

 User Guide

User Guide

	Naming Conventions
	Schema

	Table

	Item

	Partition

	Special Characters

	Configuring Flamy
	Global properties

	Environment properties

	Other properties

	List of Flamy commands
	Global options

	shell

	help

	show

	describe

	diff

	push commands

	check

	run

	Other commands

	FAQ + Did You Know?
	Frequently Asked Questions

	Did you know?

	Regen
	Motivation

	regen

 Naming Conventions

Naming Conventions

Flamy uses the following terms and conventions:

Schema

A schema represents a set of tables.

It is uniquely identified by its name (eg: my_schema)

Table

A table represents a Hive table.

Although Hive does not, Flamy requires users to always refer to a table with its fully qualified name (eg: my_schema.my_table)

Item

An item may represent either a Schema or a Table.
When a command requires ITEMS as arguments, the user can specify any space-separated list of table and/or schema names.
Giving a schema name is equivalent to giving each table names inside this schema.

Partition

A partition represents one partition of a Hive Table.
If you are not familiar with partitioning in Hive, checkout
this tutorial [http://blog.cloudera.com/blog/2014/08/improving-query-performance-using-partitioning-in-apache-hive/]
and try to use them, partitions are great!
Just don’t try to have too many for one table…
As a rule of thumb, tables with more than a few thousands partitions may start causing issues.

A partition is identified by a string of the form: schema.table/part1=val1[/part2=val2...]
(eg: stats.daily_visitors/day=2014-10-12/campaign=shoes)
However, the ordering of the columns in the string do not matter for Flamy (even if it does for Hive and HDFS).
(eg: stats.daily_visitors/campaign=shoes/day=2014-10-12 works too)

Special Characters

The characters ., =, and / being used as delimiters in the partitions names, they should not be used
as schema name, table name, partition key or value.

 Configuring Flamy

Configuring Flamy

Flamy looks for its configuration file at $FLAMY_HOME/conf/flamy.properties.
This location can be overridden when starting flamy with the -config-file option.

To get started configuring flamy, we recommend to rename the file [https://github.com/flaminem/flamy/blob/master/conf/flamy.properties.template]
$FLAMY_HOME/conf/flamy.properties.template to $FLAMY_HOME/conf/flamy.properties and start editing it.

Despite the file extension, flamy’s configuration uses the HOCON [https://github.com/typesafehub/config/blob/master/HOCON.md] syntax,
which is a superset of both the JSON syntax and the Java properties syntax (almost [https://github.com/typesafehub/config/blob/master/HOCON.md#java-properties-mapping]).
It means you can write the properties either like a regular java.properties file, or choose any level of nesting for your parameters.

For troubleshooting, you can check your configuration with the command flamy config [--on ENV]
This will display all the values that are active in your configuration for the specified environment.

Global properties

flamy.model.dir.paths List[String]

 Space-separated list of folder paths where flamy will look for the SQL files of your model.

flamy.variables.path Option[String]

 Path to the file where the variables are defined.

flamy.udf.classpath Option[String]

 List of jar paths (separated with `:`) where flamy will look for the custom Hive UDFs. Don’t forget to also add them as CREATE TEMPORARY FUNCTION in the model’s presets file.

flamy.exec.parallelism Int (default: 5)

 Controls the maximum number of jobs that flamy is allowed to run simultaneously.

Environment properties

These properties can be set for each environment you want to configure. Just replace <ENV> by the name of the correct environment

flamy.env.<ENV>.hive.server.uri String

 URI of the Hive Server 2.

flamy.env.<ENV>.hive.server.login String (default: “user”)

 Login used to connect to the Hive Server 2.

flamy.env.<ENV>.hive.presets.path Option[String]

 Path to the .hql presets file for this environment. These presets will be executed before every query run against this environment.

flamy.env.<ENV>.hive.meta.fetcher.type “direct” | “client” | “default” (default: “default”)

 The implementation used to retrieve metadata from Hive (‘client’ or ‘direct’).

flamy.env.<ENV>.hive.metastore.uri String

 Thrift URI of the Hive Metastore. Required in client mode of the meta.fetcher.

flamy.env.<ENV>.hive.metastore.jdbc.uri String

 JDBC URI of the Hive Metastore database. Required in direct mode of the meta.fetcher.

flamy.env.<ENV>.hive.metastore.jdbc.user String (default: “flamy”)

 JDBC user to use when connecting to the Hive Metastore database. Required in direct mode of the meta.fetcher.

flamy.env.<ENV>.hive.metastore.jdbc.password String (default: “flamyPassword”)

 JDBC password to use when connecting to the Hive Metastore database. Required in direct mode of the meta.fetcher.

Other properties

These are additional, less used, properties.

flamy.run.dir.path String (default: “/tmp/flamy-user”)

 Set the directory in which all the temporary outputs will be written. By default this is a temporary directory created in /tmp/flamy-$USER.

flamy.run.dir.cleaning.delay Int (default: 24)

 Set the number of hours for which all the run directories older than this time laps will be automatically removed. Automatic removal occurs during each flamy command startup.

flamy.regen.use.legacy Boolean (default: false)

 Use the old version of the regen.

flamy.io.dynamic.output Boolean (default: true)

 The run and regen commands will use a dynamic output, instead of a static output. Only work with terminals supporting ANSI escape codes.

flamy.io.use.hyperlinks Boolean (default: true)

 Every file path that flamy prints will be formatted as a url. In some shells, this allows CTRL+clicking the link to open the file.

flamy.auto.open.command String (default: “xdg-open” on Linux, “open” on Mac OSX)

 Some commands like ‘show graph’ generate a file and automatically open it. Use this option to specify the command to use when opening the file,or set it to an empty string to disable the automatic opening of the files.

flamy.auto.open.multi Boolean (default: false)

 In addition with auto.open.command, this boolean flag indicates if multiple files should be open simultaneously.

flamy.verbosity.level “DEBUG” | “INFO” | “WARN” | “ERROR” | “SILENT” (default: “INFO”)

 Controls the verbosity level of flamy.

 List of Flamy commands

List of Flamy commands

Most flamy commands have the following form:

flamy [GLOBAL_OPTIONS] COMMAND [SUB_COMMAND] [COMMAND_OPTIONS] [ITEMS]

If you are already inside a flamy shell, beginning the command with flamy is not necessary.

All the commands available in the shell can also be run as standalone commands.
For instance, flamy help and flamy show conf both work.
This enables the user to easily write and execute scripts that calls sequence of flamy commands.
The flamy shell handle quotes the same way as bash does, so there should be no worry when copy-pasting commands from the shell to standalone commands.

The arguments ITEMS denotes a list of tables or schemas.
Tables should always be referred to using their fully-qualified names (eg my_database.my_table).
Giving a schema name is equivalent to giving the list of all tables in that schema.

Global options

When specified before the shell command, the options will apply to all commands subsequently run inside the shell.
The following options are available:

--help

 Display the help.

--version

 Show version information about the software.

--config-file PATH

 Make flamy use another configuration file than the default.

--conf KEY1=VALUE1 [KEY2=VALUE2 ...]

 Specify configuration parameters from the command line.

--variables NAME1=VALUE1 [NAME2=VALUE2 ...]

 Declare variables in the command line.
These declaration will override the ones made in the variable declaration file.
Be careful when using this option, as bash automatically removes quotes.
For instance if you want to declare a variable DAY
whose value is "2015-01-03" (quotes included),
you should write --variables DAY='"2015-01-03"'.

shell

flamy shell

 Starts an interactive shell with autocomplete and faster response time.
Once in the shell, commands are run in the same way, without the first flamy keyword.
The shell handles quotes the same way bash does, which means commands run in flamy’s shell can be copy-pasted,
prefixed by the path of the flamy executable and directly run in a bash script.

help

flamy -h

flamy help [COMMAND]

show

flamy show conf [--on ENV]

 List all configuration properties applicable to the specified environment.

flamy show schemas [--on ENV]

 List all schemas in the specified environment.

flamy show tables [--on ENV] [SCHEMA1 SCHEMA2 ...]

 List all tables inside one or several schemas.

flamy show partitions --on ENV TABLE

 List all partitions in a table.

flamy show graph [--from FROM_ITEMS --to TO_ITEMS | ITEMS]

 Print the dependency graph of the specified items.

flamy show select

 Print a SELECT statement for the given table.

describe

Similar to show commands, but display more information, and take more time to run.
We recommend to enable direct metastore access as explained here.

flamy describe schemas --on ENV

 List all schemas with their properties (size, last modification time).

flamy describe tables --on ENV [ITEMS]

 List all tables inside one or several schemas with their properties (size, last modification time).

flamy describe partitions [--bytes] --on ENV TABLE

 List all partitions in a table with their properties (size, last modification time).

diff

Helpful to compare the differences between environments.

flamy diff schemas --on ENV

 Show the schemas differences between the specified environment and the modeling environment.

flamy diff tables --on ENV [ITEMS]

 Show the table differences between the specified environment and the modeling environment.

flamy diff columns --on ENV [ITEMS]

 Show the column differences between the specified environment and the modeling environment.

push commands

Helpful to propagate changes on from your model to another environment.

flamy push schemas --on ENV [--dry] [SCHEMA1 SCHEMA2 ...]

 Create on the specified environment the schemas that are present in the model and missing in the environment.

flamy push tables --on ENV [--dry] [ITEMS]

 Create on the specified environment the tables that are present in the model and missing in the environment.

check

flamy check quick ITEMS

 Perform a quick check on the specified items.

flamy check long ITEMS

 Perform a long check on the specified items. This take more time than the quick check, but is more thorough.

flamy check partitions ITEMS --on ENV [--from FROM_ITEMS --to TO_ITEMS | ITEMS]

 Check the partitions dependencies on the specified items.
This command will be much faster if run from the cluster rather than from remote.

run

flamy run [--dry] [--on ENV] [--from FROM_ITEMS --to TO_ITEMS | ITEMS]

 Execute the POPULATE workflow on the specified environment for the specified items.
If –dry flag is used, the queries will be checked by Hive but not run.
If no environment is specified, run in standalone mode on empty tables
(this requires to have *``SET hadoop.bin.path=…`` in your local presets.*

Other commands

flamy wait-for-partitions --on ENV [OPTIONS] PARTITIONS

 Wait for the specified partitions to be created if they don’t already exist.
Options are:

 --after TIME will wait for the partitions to be created or refreshed after the specified TIMESTAMP

 --timeout DURATION will make flamy return a failure after DURATION seconds

 --retry-interval INTERVAL will make flamy wait for INTERVAL seconds between every check

flamy gather-info --on ENV [ITEMS]

 Gather all partitioning information on specified items (everything if no argument is given)
and output this as csv on stdout.

 FAQ + Did You Know?

FAQ + Did You Know?

In this section are gathered a few ‘Frequently Asked Questions’ and ‘Did You Know’ tricks
that are useful to learn when using flamy.

Don’t hesitate to come back to this page often to refresh you memory or learn new things.

Frequently Asked Questions

Be the first to ask a question!

https://groups.google.com/forum/#!forum/flamy

(But before you do, please make sure this section doesn’t already answer it)

Did you know?

Folder architecture

When flamy scans the model folder, it looks recursively for folders ending in .db
This means that you can regroup your schemas in subfolders if you want.
The only constraint are that the folders corresponding to the tables
must be directly inside the schema (.db) folder.
The table folder may then contain CREATE.hql, POPULATE.hql,
VIEW.hql and META.properties files.
You can safely add other type of files in theses directories,
they will be ignored by flamy, but we plan to extend the set
of files recognized by flamy in the future.
For instance, this folder structure is allowed:

model
├── schema0.db
│ └── table0
│ ├── CREATE.hql
│ └── comments.txt
│ └── work_in_progress.hql
├── project_A
│ ├── schemaA1.db
│ │ └── tableA1a
│ │ └── CREATE.hql
└── project_B
 └── schemaB1.db
 └── tableA21
 └── CREATE.hql

The configuration flamy.model.dir.paths allows you to specify multiple folders,
if you want to separate your projects even more.

Schema properties

If you want to create a schema with specific properties (location, comment), you can
add a CREATE_SCHEMA.hql inside the schema (.db) folder, which will contain the CREATE statement of your schema.
Flamy will safely ignore the location when dry-running locally.

What about views?

Flamy supports views. To create a view with flamy, all you have to do is to write a VIEW.hql
statement with the CREATE VIEW statement instead of the CREATE.hql.

Views are treated as table when possible, which means that the show tables, describe tables command will correctly list them,
and the push tables command will correctly push them, in the right order.

Multiple POPULATEs on the same table?

Flamy allows you to write multiple queries separated by semicolons ; in the same POPULATE.hql,
in such case, the queries will always be run together and sequentially.
But you can also have multiple POPULATE files, by using a suffix of the form _suffix.
In such case, when possible flamy will execute all the POPULATE files of a given table in parallel.

For instance a common pattern in Hive for a table aggregating data from two sources,
is to partition it by source and to have one Hive query per source.
In such case you could write a POPULATE_sourceA.hql and a POPULATE_sourceB.hql file to keep the two logics separated
and be able to execute both queries in parallel.

Hidden files

Files and folder prefixed with a dot . or an underscore _ will be ignore by flamy.
This follows the same convention as HDFS, and is especially useful when you are developing something
that is not fully ready yet, but you still want flamy to validate everything.

Presets files

For any environment myEnv you have configured (including the ‘model’ environment),
you can set the configuration parameter flamy.env.<ENV>.hive.presets.path
to make it point to a .hql file that may contains several commands that will be performed
before every query session on this environment.
For instance, if your cluster prevents dynamic partitioning by default, you can add
this line in your presets file to enable it for all your queries.

SET hive.exec.dynamic.partition.mode = nonstrict ;

This file is also required to handle custom UDFs, as explained in the next paragraph.

Custom UDFs

One of Hive’s main advantages is that it is quite easy to create and use custom UDFs.
If you have custom UDFs, when using the check long or the run --dry command locally,
you have to make sure that flamy has access to the custom UDF jar and that the functions
are correctly defined in the model presets.

This is how to proceed:

	Set the flamy.udf.classpath configuration parameter to point to the jar(s) containing your custom UDFs.

	Create a PRESETS_model.hql file and set flamy.env.model.hive.presets.path to point to it.

	In the presets file, add one line to create each function you want to use
CREATE TEMPORARY FUNCTION my_function AS "com.example.hive.udf.GenericUDFMyFunction" ;

What about non-Hive (e.g. Spark) jobs?

We all agree that SQL is great at performing some tasks, and very poor at others,
which is why our most complex jobs in our workflow are done with pure-Scala Spark jobs.
To handle these Spark dependencies between two tables, add a file called META.properties
in the destination table folder and indicate the name of the source tables of your spark job like this:

dependencies = schema.source_table_1, schema.source_table_2

When displaying the dependency graph with show graph, flamy will now add blue arrows in the graph
to represent these external dependencies.

Unfortunately, for now, flamy is not capable of handling Spark job, and we usually used a regular scheduler
to populate all the tables required by the spark job with one flamy run command, then started
the spark job, and finally populated all the tables downstream with another flamy run command.

Better handling for Spark jobs is part of the new features we would like to develop, although we know that
since Spark is much more permissive than the SQL syntax, some features, like the automatic dependency discovery
or the dry-run will be difficult to extend to Spark.

For jobs at the interface between the Hive cluster and other services,
we used our regular scheduler, and flamy was no help here.
However some of its feature like the graph and the dry-run
could be a source of inspiration for designing similar features in a scheduler.

 Regen

Regen

In this section, we present Flamy’s most powerful feature: the regen
This feature is not part of the open-source edition of Flamy, so please
contact us [http://www.flaminem.com/en/contact-us] if you would like to try it out.

After two years developing and using flamy, we obtained
very high increase in productivity when using Hive, but one of the
most time-consuming issue we still had to deal with was
making sure that our constantly-evolving data pipelines
were always correct and up to date.

Imagine that you start with a simple data pipeline
such as the one we used in the tutorial:

[image: nasa_access graph]

Motivation

Let us take as an example the simple data pipeline used in [flamy’s tutorial](Demo).
The input table of your workflow (here nasa_access.daily_logs) receives data from an external source and you execute various
transformations to obtain other tables. Your tables are partitioned by day, and every day, you execute
the workflow with the flamy run command for the new batch of data that arrived.

But at some point, you realize that because of some error somewhere,
the last two months of data that arrived in the table nasa_access.daily_logs
contains some error that should be fixed (for instance, a field has a wrong format, and this
generates null values down your pipeline).
What should you do?

Generally, the solution consists in writing a custom query to fix the issue over the last
two months, and of course update the table’s Populate to prevent this problem from occurring again.

But once you have applied your fix and regenerated two months of data in the table nasa_access.daily_logs,
you should perhaps propagate the changes downstream and recompute two months of data for the other tables
below.
And this is where we hit a complex issue: how to check which partitions are up-to-date with their upstream,
and which one should be regenerated?
In our simple example we have only 4 tables, but quite frequently companies can build very complex pipelines
that can have tens of intermediary steps, branches, and so on. Imagine the kind of conundrums it can create!

This is why we added to flamy the regen feature:

regen

By analyzing the Hive queries, flamy is actually able to infer which partitions are outdated or missing
regarding their upstream data.
Flamy is then capable of running the right POPULATE queries, with the correct variable replacements,
to (re-)generated the outdated or missing partitions in your workflow.

Here is an example of the regen running on the tutorial’s example:

 Index

Index

_static/up.png

_images/graph.png
nasa_access_import |

raw_data

l o facts

daily_logs| -+ |http_status|

\is

daily_logs

/N

daily_urls_with_error]

daily_urls

NS

daily_url_error_rates

nasa_access_import

raw_data
line STRING
month STRING

)

INT

STRING!
STRING!
STRING!

response_code INT
response_group STRING

daily_logs
source_ip. STRING Tacts
source_url STRING
time TIMESTAMP hitp_status
action STRING code
url STRING status_group
protocol STRING message
response_code INT description
size INT
line STRING
day STRING
daily_logs
source_ip STRING
source_url STRING
time TIMESTAMP
action STRING
url STRING
file_extension ~ STRING
protocol STRING

size INT
line STRING
day STRING

/

\

daily_urls_with_error daily_urls
£ wl STRING £ wl STRING|
£ file_extension STRING & file_extension ~ STRING
nb_occurrences BIGINT nb_occurrences BIGINT
nb_dist_user BIGINT nb_dist_user _ BIGINT
day STRING day STRING|
daily_url_error_rates
£ wl STRING
b file_extension STRING
nb_access BIGINT
nb_errors BIGINT
error_rate DOUBLE
day STRING

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to flamy’s documentation!

 		
 Getting Started

 		
 Flamy Overview

 		
 What Flamy is

 		
 What Flamy is not

 		
 Setup Guide

 		
 Installing Flamy

 		
 Setting up direct Metastore access

 		
 Tutorial

 		
 Part 0. Starting the demo

 		
 Part 1. Local commands

 		
 Part 2. Remote commands

 		
 What next ?

 		
 User Guide

 		
 Naming Conventions

 		
 Schema

 		
 Table

 		
 Item

 		
 Partition

 		
 Special Characters

 		
 Configuring Flamy

 		
 Global properties

 		
 Environment properties

 		
 Other properties

 		
 List of Flamy commands
